Маятник Ньютона

Маятник Ньютона

Маятник Ньютона (колыбель Ньютона) — это  механическая система из нескольких шариков, подвешенных на нитях в одной плоскости, колеблющихся в этой плоскости и соударяющихся друг с другом. Система демонстрирует преобразование энергии: кинетической в потенциальную и наоборот. В отсутствие сил трения система могла бы действовать вечно.

 

Физический маятник

Физический маятник

Физический маятник — твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной горизонтальной оси, не проходящей через центр масс этого тела.

Прийти к понятию физического маятника можно если размерами массивного тела пренебречь нельзя, но всё ещё можно не учитывать упругих колебаний тела.

Источник

Пружинный маятник

Пружинный маятник

Пружинный маятник — это колебательная система, представляющая собой теле, закреплённое на пружине.

0100904

Свободные колебания пружинного матяника имеют следующие причины:

1. сила, действующая на тело, всегда направлена к положению равновесия;

2. колеблющееся тело инетртно, поэтому оно не останавливается в положении равновесия (когда сила упругости становится равной нулю), а продолжает движение в прежнем направлении.

Формула для расчёта периода колебаний пружинного матника:

маятник формула_пружинный

m — масса тела;
k — жёсткость пружины.

Математический маятник

Математический маятник

Математический маятник — это физическая модель, представляющая собой материальную точку, которая подвешена на невесомой и нерастяжимой нити и совершает колебания под действием силы тяжести.

В данном случае колебательную систему образует нить, присоединённое к ней тело и Земля.

Период колебаний математического маятника не зависит от его масся и амплитуды и определяется по формуле Гюйгенса (получена в 18 веке голландским учёным Христианом Гюйгенсом):

маятник формула

где Т — период колебаний математического маятника;
g — ускорение свободного падения;
l — длина подвеса.

В Пизанском соборе есть люстра, которая свисает из-под купола на 49-метровом подвесе. Эту люстру называют «лампа Галилея».

Потоки воздуха в куполе и сквозняки раскачивали «лампу», а профессор Галилей, используя удары пульса как часы, установил, что время колебания люстры-маятника всегда постоянно и не зависит от величины её размаха (явление изохронности). Галилей сделал заключение, что маятник с жёстким стержнем может служить хорошим регулятором хода часов.

Все маятниковые часы мира были «крещены» в этом соборе в 1589 году. По длине маятника (в метрах) можно посчитать период его качания в секундах.

Гироскоп

Гироскоп — это прибор, основным элементом которого является быстро вращающийся ротор, закрепленный так, что ось его вращения может поворачиваться. Три оси возможного вращения ротора гироскопа обеспечиваются двумя рамками карданова подвеса. Если на такое устройство не действуют внешние возмущения, то ось собственного вращения ротора сохраняет постоянное направление в пространстве. Если же на него действует момент внешней силы, стремящийся повернуть ось собственного вращения, то она начинает вращаться не вокруг направления момента, а вокруг оси, перпендикулярной ему (прецессия).

 Рис. 1. ГИРОСКОП С ТРЕМЯ СТЕПЕНЯМИ СВОБОДЫ (с двумя рамками карданова подвеса), кинематическая схема. Iy – ось собственного вращения ротора, вдоль которой направлен его кинетический момент; I0 – опорное направление кинетического момента; j – угол отклонения внутренней рамки карданова подвеса; wj – угловая скорость поворота внутренней рамки подвеса (прецессия); Mq – момент возмущающей внешней силы; wq – угловая скорость поворота внешней рамки подвеса (нутация).

В хорошо сбалансированном (астатическом) и достаточно быстро вращающемся гироскопе, установленном на высокосовершенных подшипниках с незначительным трением, момент внешних сил практически отсутствует, так что гироскоп долго сохраняет почти неизменной свою ориентацию в пространстве. Поэтому он может указывать угол поворота основания, на котором закреплен. Именно так французский физик Ж.Фуко (1819–1868) впервые наглядно продемонстрировал вращение Земли. Если же поворот оси гироскопа ограничить пружиной, то при соответствующей установке его, скажем, на летательном аппарате, выполняющем разворот, гироскоп будет деформировать пружину, пока не уравновесится момент внешней силы. В этом случае сила сжатия или растяжения пружины пропорциональна угловой скорости движения летательного аппарата. Таков принцип действия авиационного указателя поворота и многих других гироскопических приборов. Поскольку трение в подшипниках очень мало, для поддержания вращения ротора гироскопа не требуется много энергии. Для приведения его во вращение и для поддержания вращения обычно бывает достаточно маломощного электродвигателя или струи сжатого воздуха.

Источник

 

Маятник Фуко

Маятник Фуко

Маятник Фуко — маятник, который используют для экспериментальной демонстрации суточного вращения Земли.

Маятник Фуко представляет собой массивный груз, подвешенный на проволоке или нити, верхний конец которой укреплён (например с помощью карданного шарнира) так, что позволяет маятнику качаться в любой вертикальной плоскости. Если маятник Фуко отклонить от вертикали и отпустить без начальной скорости, то действующие на груз маятника силы тяжести и натяжения нити будут лежать всё время в плоскости качаний маятника и не смогут вызвать её вращения по отношению к звёздам (к инерциальной системе отсчёта, связанной со звёздами). Наблюдатель же, находящийся на Земле и вращающийся вместе с ней (т. е. находящийся в неинерциальной системе отсчёта), будет видеть, что плоскость качаний маятник Фуко медленно поворачивается относительно земной поверхности в сторону, противоположную направлению вращения Земли. Этим и подтверждается факт суточного вращения Земли.

5076-43.jpg

На Северном или Южном полюсе плоскость качаний маятник Фуко совершит поворот на 360° за звёздные сутки (на 15o за звёздный час). В точке земной поверхности, географическая широта которого равна φ, плоскость горизонта вращается вокруг вертикали с угловой скоростью скоростью ω= ω sinφ (ω -модуль угловой скорости Земли) и плоскость качания маятника вращается с той же угловой скоростью. Поэтому видимая угловая скорость вращения плоскости качаний маятника Фуко на широте φ, выраженная в градусах за звёздный час, имеет значение ωм=15osinφ , т. е. будет тем меньше, чем меньше φ, и на экваторе обращается в нуль (плоскость не вращается). В Южном полушарии вращение плоскости качаний будет наблюдаться в сторону, противоположную наблюдаемой в Северном полушарии. Уточнённый расчёт даёт значение


ωм = 15[1 — (3/8)(a/l)2] sinφ

где а-амплитуда колебаний груза маятника, — длина нити. Добавочный член, уменьшающий угловую скорость, тем меньше, чем больше l. Поэтому для демонстрации опыта целесообразно применять маятник Фуко с возможно большей длиной нити (в несколько десятков м).

История

Впервые этот прибор сконструировал Французский учёный Жан Бернар Леон Фуко.

Похожее изображение

Этот прибор представлял собой пятикилограммовый латунный шар, подвешенный к потолку на двухметровой стальной проволоке.

      Первый опыт Фуко провёл в подвале собственного дома 8 января 1851 года.  Об этом была сделана запись в научной дневнике учёного.

3 февраля 1851 года Жан Фуко продемонстрировал свой маятник в Парижской обсерватории академикам, которые получили письма такого содержания: «Приглашаю Вас проследить за вращением Земли».

     Первая публичная демонстрация опыта произошла по инициативе Луи Бонапарта в парижском Пантеоне в апреле того же года. Под куполом Пантеона был подвешен металлический шар массой 28 кг с закреплённым на нём остриём на стальной проволоке диаметром 1,4 мм и длиной 67 м. Крепление маятника позволяло ему свободно колебаться во всех направлениях. Под точкой крепления было сделано круговое ограждение диаметром 6 метров, по краю ограждения была насыпана песчаная дорожка таким образом, чтобы маятник в своём движении мог при её пересечении прочерчивать на песке отметки. Чтобы избежать бокового толчка при пуске маятника, его отвели в сторону и привязали верёвкой, после чего верёвку пережгли. Период колебаний составлял 16 секунд.

   Эксперимент имел большой успех и вызвал широкий резонанс в научных и общественных кругах Франции и других стран мира. Только в 1851 году были созданы другие маятники по образцу первого, и были проведены опыты Фуко в Парижской обсерватории, в кафедральном соборе Реймса, в церкви св.Игнатия в Риме, в Ливерпуле, в Оксфорде, Дублине, в Рио-де-Жанейро, в городе Коломбо на Цейлоне, Нью-Йорке.

   Во всех этих экспериментах размеры шара и длина матяника были разными, но все они подтверждали выводы Жан Бернара Леона Фуко.

   Элементы маятника, который был продемонстрирован в Пантеоне, сейчас хранятся в парижском Музее искусств и ремёсел. А маятники Фуко сейчас находятся во многих уголках мира: в политехнических и научно-природоведческих музеях, научных обсерваториях, планетариях, университетских лабораториях и библиотеках.

  В Украине есть три маятника Фуко. Один хранится в Национальном техническом университете Украины «КПИ им. Игоря Сикорского», второй – в Харьковском национальном университете им. В.Н. Каразина, третий – в Харьковском планетарии.

Ссылки:
http://dic.academic.ru/dic.nsf/ruwiki/73876
http://www.library.kpi.ua/node/286

 

Адгезия

Адгезия (от лат. adhasio — прилипание) — возникновение связи между поверхностными слоями двух разнородных твёрдых или жидких тел, приведённых в соприкосновение. Является результатом межмолекулярного взаимодействия, ионной или металлической связей.
Частный случай адгезии является когезия (от лат. cohaesus — связанный, сцепленный), сцепление друг с другом частей одного и того же тела, обусловленное действием сил межмолекулярного взаимодействия, водородной связи и (или) химической связи между составляющими его молекулами, атомами, ионами, и приводящее к объединению этих частей в единое целое с наибольшей прочностью. Силы когезии резко убывают с расстоянием, незначительны в газах и наиболее велики в твёрдых телах. Кагезия характеризует прочность тела, лишённого дефектов по отношению к деформациям.

Предельный случай адгезии — химическое взаимодействие на поверхности раздела (хемосорбция) с образованием слоя химического соединения.

Адгезия измеряется силой или работой отрыва на единичной площади контакта поверхностей (адгезионного шва) и становится предельно большой при полном контакте по всей площади соприкосновения тел (например, при нанесении жидкости — лака или клея — на поверхность твёрдого тела в условиях полного смачивания).
В процессе адгезии уменьшается свободная поверхностная энергия тела. Уменьшение этой энергии, приходящейся на 1 см2 адгезионного шва, называется свободной энергией адгезии.

Источник www.getaclass.ru