Признаки делимости на натуральные числа

Признак делимости на 2. Число делится на 2, если его последняя цифра — чётное число.
Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными. Ноль — чётное число.

Признак делимости на 4. Число делится на 4, если две его последние цифры — нули или образуют число, которое делится на 4.

Признак делимости на 8. Число делится на 8, если три его последние цифры — нули или образуют число, которое делится на 8.

Признаки делимости на 3 и 9.  Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.

Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.

Признак делимости на 5. Число делится на 5, если его последняя цифра — ноль или 5.

Признак делимости на 7. Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 — (2 · 9) = 7 делится на 7).

Признак делимости на 11.  На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.

Признак делимости на 13. Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 17. Делимость числа на 17 зависит от соотношения между цифрами числа без его последней цифры и этой последней цифрой. Натуральное число делится на 17, если разность — это число без его последней цифры минус его последняя цифра, умноженная на 5, — делится на 17.

Признак делимости на 25. Число делится на 25, если две его последние цифры — нули или образуют число, которое делится на 25.

Признак делимости на 10.  Число делится на 10, если его последняя цифра — ноль.

Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.

Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.